# **PTC Therapeutics in Gene Therapy**

# From Lab to Patient

# What causes genetic disorders?

Genes are small sections of DNA that provide instructions for the body to make proteins involved in processes essential for life.<sup>1</sup>



A change or fault in the gene, called a mutation, may cause a 'genetic disorder'.<sup>2</sup>



# Gene therapy: new hope for previously intractable disease.

Gene therapy aims to treat the genetic disorders by replacing or inactivating genes or introducing corrective genes into cells.<sup>3</sup>

New genes are transferred into cells using transporters known as vectors; made from modified, inactivated viruses that are not harmful.<sup>3</sup>

In-vivo – directly infused inside the patient<sup>3</sup>

**Ex-vivo** – transferred outside the body and then returned to the patient<sup>3</sup>

By correcting the genetic cause of disease, a single dose of a gene therapy can offer benefits lasting years, if not a lifetime, versus a lifetime of ongoing treatment.<sup>4</sup> Gene therapy is bringing new hope for thousands of people, many of whom are children with disabling and life-limiting conditions.<sup>5</sup>

Gene therapy holds tremendous promise for some of the most debilitating genetic disorders. PTC Therapeutics is at the forefront of this exciting and transformative area.



Rare Resolve for Rare Disease – an ongoing campaign to raise awareness of AADC deficiency and accelerate the recognition, referral and diagnosis of patients with this rare disease



2019

Support for no-cost access to 3-OMD screening tests for patients suspected of AADC deficiency and biobank screening initiatives

Masterclass webinars for specialists worldwide

### 2020

PTC Therapeutics seeks regulatory approval for PTC-AADC for AADC deficiency in the EU



Surgeons from the US and Germany observed the treatment in Taiwan



### 2019

PTC Therapeutics starts working with select treatment centers across the US and Europe to establish a standard of care for the delivery of its AADC deficiency gene therapy



### 2020

PTC Therapeutics launches a variety of no cost genetic and blood testing options globally, for HCPs to test patients suspected of having AADC deficiency



CHMP reviewing marketing access application for PTC-AADC for patients with AADC deficiency



2021

PTC Therapeutics plans to submit Biologics License Application for AADC deficiency gene therapy to the FDA by year end



# PTC Therapeutics has one of the most advanced gene therapy pipelines for rare neurological disorders\*

## PTC-AADC for AADC deficiency (DDC gene)

AADC deficiency typically causes severe disability and suffering from the first months after birth, affecting every aspect of life – physical, mental and behavioural<sup>8-12</sup>

## PTC-FA for Friedreich ataxia (FXN gene)

Friedreich ataxia progressively robs patients of their ability to walk, speak, see and hear<sup>13</sup>

## PTC-AS for Angelman syndrome (UBE3A gene)

Angelman syndrome is characterized by profound intellectual and developmental delays<sup>14</sup>

\* Information last updated October 2021

#### Abbreviations

AADC, Aromatic L-amino acid decarboxylase; HCP, Healthcare professional; 3-OMD, 3-O-methyldopa

#### References

National Human Genome Research Institute. Available at: https://www.genome.gov/about-genomics/fact-sheets/Deoxyribonucleic-Acid-Fact-Sheet. Last accessed October 2021. 2. The Tech Interactive. Available at: https://genetics.thetech.org/about-genetics/mutations-and-disease. Last accessed October 2021. 3. American Society of Gene and Cell Therapy. Available at: https://patienteducation.asgct.org/gene-therapy-101/gene-therapy-basics. Last accessed October 2021. 4. Goswami R, et al. Gene Front Oncol. 2019;9:297. 5. Bates M. IEEE Pulse. 2019;10(6):9-12. 6. Edelstein ML, et al. J Gene Med. 2004;6(6):597-602. 7. Moran N. Nat. Biotechnol. 2012;30:1153.
Wassenberg T, et al. Orphanet J Rare Dis. 2017;12(1):12. 9. Hwu WL et al. JIMD Rep. 2018; 40:1-6. 10. Himmelreich N, et al. Mol Genet Metab. 2019;127(1):12-22. 11. Chien YH, et al. Mol Genet Metab. 2016;118(4):259-263. 12. Williams K et al. Poster presented at ISPOR 2021, May 17-20, 2021. 13. Cook A and Giunti P. Br Med Bull. 2017; 124(1): 19–30. 14. Margolis SS, et al. Neurotherapeutics. 2015;12(3):641-50.





